Internal Diffusion Limited Aggregation on Discrete Groups Having Exponential Growth
نویسندگان
چکیده
منابع مشابه
Internal Diffusion-limited Aggregation on Non-amenable Graphs
Abstract The stochastic growth model Internal Diffusion Limited Aggregation was defined in 1991 by Diaconis and Fulton. Several shape results are known when the underlying state space is the d-dimensional lattice, or a discrete group with exponential growth. We prove an extension of the shape result of Blachère and Brofferio for Internal Diffusion Limited Aggregation on a wide class of Markov c...
متن کاملInternal Diffusion-Limited Aggregation: Parallel Algorithms and Complexity
The computational complexity of internal diffusion-limited aggregation (DLA) is examined from both a theoretical and a practical point of view. We show that for two or more dimensions, the problem of predicting the cluster from a given set of paths is complete for the complexity class CC, the subset of P characterized by circuits composed of comparator gates. CC-completeness is believed to impl...
متن کاملSlippery diffusion-limited aggregation.
Colloidal particles that interact through strong, short-range, secondary attractions in liquids form irreversible "slippery" bonds that are not shear-rigid. Through event-driven simulations of slippery attractive spheres, we show that space-filling fractal clusters still emerge from the process of "slippery" diffusion-limited aggregation (DLA). Although slippery and classic DLA clusters have th...
متن کاملAdvection-diffusion-limited aggregation.
Much is known about diffusion-limited growth from a dilute suspension. The simplest and most famous model is diffusion-limited aggregation (DLA), in which random walkers are released one-by-one far away and become frozen where they first touch a growing fractal cluster. Real growth phenomena, such as mineral deposition in rocks, however, often involve multiple processes, such as advection-diffu...
متن کاملDiffusion Limited Aggregation on the Boolean Lattice
In the Diffusion Limited Aggregation (DLA) process on on Z, or more generally Z, particles aggregate to an initially occupied origin by arrivals on a random walk. The scaling limit of the result, empirically, is a fractal with dimension strictly less than d. Very little has been shown rigorously about the process, however. We study an analogous process on the Boolean lattice {0, 1}, in which pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability Theory and Related Fields
سال: 2006
ISSN: 0178-8051,1432-2064
DOI: 10.1007/s00440-006-0009-2